If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+160Y+50
We move all terms to the left:
-(-16Y^2+160Y+50)=0
We get rid of parentheses
16Y^2-160Y-50=0
a = 16; b = -160; c = -50;
Δ = b2-4ac
Δ = -1602-4·16·(-50)
Δ = 28800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28800}=\sqrt{14400*2}=\sqrt{14400}*\sqrt{2}=120\sqrt{2}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-120\sqrt{2}}{2*16}=\frac{160-120\sqrt{2}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+120\sqrt{2}}{2*16}=\frac{160+120\sqrt{2}}{32} $
| 16c+4(c−5)=220 | | 1-(-x+3)=10 | | -2n+5=15 | | 16.13+0.09x=16.63-0.12x | | 4.3r+r=16.5 | | 3x4=x/2 | | 6y-3y+11y=-42+28 | | 3x-16=7x-75 | | 2x+5-x=46 | | 3(5n-1)-14n+11=1-2 | | –10v−10=–10v | | –9z+8z=–z | | 8(m-12)= | | 9m-20= | | x+2x+x=18 | | 4.50=0.10h | | 6Xn+13=-161 | | 60=k20 | | 7(4x-50-4(6x+5)=-91 | | 4.2(x-3)=1.05 | | 2^4x=14 | | f-5.2=4.1 | | (2x+45)+(3x+55)=135 | | -22/4=2w | | 4x-8/10-8=4 | | 6x-11+23+90=180 | | -6x+15=8x+24 | | s+–53=33 | | 3x+(2x+5)+(3x-10)+(2x+15)=360 | | y2-10=90 | | 7-3x=40-14x | | (-2/9)m+12=-8 |